Programmation impérative en Python UNIVERSITE
COTE D'AZUR

Cours 8. Ensembles, dictionnaires et matrices

Olivier Baldellon

Courriel : prénom.nom@univ-cotedazur.fr

Page professionnelle : https://upinfo.univ-cotedazur.fr/~obaldellon/

LICENCE 1 — FACULTE DES SCIENCES ET INGENIERIE DE NICE — UNIVERSITE COTE D’AZUR

https://upinfo.univ-cotedazur.fr/~obaldellon/

Concours Tk ANNONCES

» Il y aura pour les volontaires un projet Tk noté.
» La note sera un bonus

» Les regles et les objectifs :
seront données en détail la semaine prochaine.
Vous devez utiliser Python et Tk (et rien d’autre).
Votre code doit étre lisible, propre et commenté.
Votre code doit étre générique et paramétrable.
Votre code doit fonctionner sans probleme sur les machines Linux du
Petit Valrose.
Date limite : date de I'examen final ?

1/40

Sommaire

& Partie 1. Ensembles

N

Partie 11. Fonctions de hachage

|\

Partie 111. Dictionnaires

N

Partie 1v. Mémoisation

Partie v. Matrices

Y

N

Partie vi. Table des matiéres

2/40

de données PARTIE 1. ENSEMBLES

» Nous avons eu 'occasion de voir plusieurs types de données.

>>> type(-29)
Des types simples <class 'int'>
>>> type(42.23)
<class 'float'>
>>> type()
<class 'bool'>

>>> type((1,2,3))

Des types des <class 'tuple'>
2 >>> type([11,1.2])
séquences <class 'list'>

>>> type("Salut a toi")
<class 'str'>

» Nous allons voir deux autres types

>>> type({1,2,3}) # Les ensembles
<class 'set'>
>>> type({'prix':1.2 , 'nom
<class 'dict'>

:'banane'}) # Les dictionnaires

3/40

Ensembles Python PARTIE 1. ENSEMBLES

» Un ensemble en Python est une collection finie d’objets

Une collection sans répétition et sans ordre

» Un ensemble n’est pas une séquence!
On ne peut pas accéder aux éléments via des indices. EfiT”

» Ils sont notés avec des accolades comme en mathématiques.

>> {1, 2, 3, 1, 2 } # Ni répétition
{1, 2, 3}

>> {1, 2, 3Y=={3,1, 2} # ni ordre

True

>>> { , 'bleu', 2, 'bleu'} == {2, , 'bleu', 2, 2}
True

» L’ensemble vide est noté : set () (et non pas {} qui est un dictionnaire)

>>> type({})
<class 'dict'>
>>> type(set())
<class 'set'>
>>> set()

set()

4/40

Accés aux éléments d’un ensemble PARTIE 1. ENSEMBLES

» La notation Efi1 n’a pas de sens

Les éléments ne sont pas ordonnés : ils n’ont donc pas d’indice.

>>> E = { 22, 31.2, , X
>>> E[2]
TypeError: 'set' object ts mot subscriptable

» On peut parcourir un ensemble avec une boucle for :

L’ordre n’est pas respecté (car il n’y a pas d’ordre!)

>>> for x in E:
C.. print(x)
True
Salut
22
31.2

5/40

Appartenance et inclusion PARTIE 1. ENSEMBLES

» L’opérateur in permet de savoir si un élément appartient a un ensemble

>>> A = {22, }; B=4{22, 31.2, s }
>>> print(31.2 in A , 31 2 in B)
False True

» En mathématiques, A est inclus dans B si tout élément de A appartient a B
ACB = Vxe€eAx€B

» Traduisons cela en Python avec une boucle for

def inclusion(A,B): |LSCRIPT| >>> inclusion(4,B)
. e True
for ?flﬁoiix in B): >>> inclusion(B,A)
return False .
— >>> inclusion(A,A)
True

» Ou directement avec 'opérateur <= (si on veut 'inclusion stricte : <) :

>>> print(A<=B , B<=A , A<=A, A<A , set()<A)
True False True False True

6/40

Nombre d’éléments d’un ensemble PARTIE 1. ENSEMBLES

» En mathématiques, le cardinal est le nombre d’éléments d’un ensemble.

def cardinal(E): SCRIPT
c=0
for x in E:
c=c+1
return c
>>> cardinal({2,2,1,1,3,3,2,1,2,3})
3
>>> {2,2,1,1,3,3,2,1,2,3} # ne contient bien que 3 éléments
{1, 2,
>>> cardinal(set())
0

» Comme d’habitude, on s’embé ur rien : fonction len

C’est important pédagogiquement de savoir réécrire les fonctions de base.

>>> len({2,2,1,1,3,3,2,1,2,3})
3

>>> len(set())
0

7/40

Construire un ensemble PARTIE 1. ENSEMBLES

» On peut construire un ensemble en donnant directement ses valeurs

>>E={1, 2, 3, 4}
>>> E
{1, 2, 3, 4}

» De méme que les listes, on peut les construire par compréhension.

>>> L = [x%10 for x in range(100) if x%6==0]
>>> L # L est une liste

(o, 6, 2, 8, 4, 0, 6, 2, 8, 4, 0, 6, 2, 8, 4, 0, 6]

>>> E = { %10 for x in range(100) if x%6==0 }

>>> E # E est un ensemble

{0, 2, 4, 6, 8}

» On peut utiliser la fonction de conversion set (voir cours 5 page 18)

>>> set('abc')

{'b', lal’ ICI}
>>> set(['a','b','c'])
{lbl, lal’ ICI}
>>> set(('a','b','c'))
{'b', lal’ ICI}

8/40

Modiﬁer un ensemble PARTIE 1. ENSEMBLES

» Les ensembles sont mutables : Cela signifie que 'on peut les modifier.

» On peut ajouter un élément avec la méthode add

>>> E # E contient 3 éléments
{1, 2, 3}

>>> E.add(12)

>>> E # E contient maintenant 4 éléments

{1, 2, 3, 12}
>>> E.add (1)
>>> E # E contient toujours 4 éléments

{1, 2, 3, 12}

» On peut supprimer un élément avec la méthode remove

>>> E = {'Salut’', ,(1,2,3),'Ha ha ha'}
>>> E.remove('HA ha ha')
Traceback (most recent call last):

File "<console>", line 1, in <module>
KeyError: 'HA ha ha'
>>> E

{False, 'Ha ha ha', 'Salut', (1, 2, 3)}
>>> E.remove('Ha ha ha')

9/40

Opérations sur les ensembles PARTIE 1. ENSEMBLES

» On veut écrire 'union de deux ensembles.

def union(A,B):

E = set() # ensemble vide

for x in A:
E.add(x)

for x in B:
E.add(x)

return E

SCRIPT

>>> A={1,2,3,4}
>>> B={2,4,6,8}
>>> union(A,B)

{1, 2, 3, 4, 6, 8}
>>> union(A,A)

{1, 2, 3, 4}

» Comme toujours, la fonction existe déja sous Python!
UuMonAuB:{x:xeruxeB}senMeAI B
L’intersectionAnB:{x :x€Aet xEB} senoteA & B
La&ﬂ&aweA\B:{x:xEAetxeB}mrmmA - B

>>> A={1,2,3,
>>> B={2,4,6,
>>> A|B

{1, 2, 3, 4, 6, 8}

4}
8}

>>> A&B
{2, 4}
>>> A-B
{1, 3}

» Exercice : écrire intersection et la différence sans utiliser d’opérateurs.

10/40

Ql_g puis-je mettre dans un ensemble ? PARTIE 1. ENSEMBLES

» Bonne question : essayons!

>>> { '123' , 'abc' } # str : tmmuable
{'123', 'abc'}
>>> { (1,2,3) , (‘a','b','c') } # tuple : immuable
{(1’ 2’ 3)’ (|a|’ Ib‘, 'C‘)}
>>> { [1,2,3] , ['a','b','c'] } # list : mutable
Traceback (most recent call last):

File "<console>", line 1, in <module>
TypeError: wunhashable type: 'list'
>> { {1,2,3} , {'a','b','c'} } # set : mutable
Traceback (most recent call last):

File "<console>", line 1, in <module>
TypeError: wunhashable type: 'set'

» Un ensemble est mutable, mais ses éléments doivent étre immuable.
On peut faire des ensembles de tuple (ensembles de points du plan)
On ne peut pas faire des ensembles de listes ou d’ensemble.

» Que signifie unhashable type du message d’erreur?

En interne, les ensembles utilisent des fonctions de hachage.

11/40

Sommaire

Partie 1. Ensembles

N

Partie 11. Fonctions de hachage

N\ N\

Partie 111. Dictionnaires

N

Partie 1v. Mémoisation

Partie v. Matrices

Y

N

Partie vi. Table des matiéres

12/40

Q_iest—ce ? PARTIE 11. FONCTIONS DE HACHAGE

» Qu’est-ce qu’une empreinte digitale ?
C’est un marqueur biologique en théorie unique.

Facile a stocker, « facile » a comparer, facile a obtenir

» Existe-il un équivalent numérique ?

Une fonction de hashage permet de construire une empreinte numérique.

» Exemple : la fonction md5

Elle calcule une empreinte (digest) de 128 bits.

On représente I'empreinte le plus souvent par son écriture hexadécimale

>>> from hashlib import mdb
>>> def h(x):

- return md5(repr(x).encode()) .hexdigest ()
>>> h(3)

'eccbc87e4b5ce2fe28308fd9f2a7baf3"’

>>> h([1,2,3])

'4925a960c5714c2e29dd1a7e7b950741"'
>>> h(min)

'0£61485£d84d673c233e28e1d2abacfe’

13/40

Pourquoi ? PARTIE 11. FONCTIONS DE HACHAGE

» A quoi ces fonctions servent-elles ?
Elles permettent de créer un identifiant pour un objet quelconque.
En particulier cela sert a comparer des données volumineuses.
Sauriez-vous trouver la différence entre les deux chaines?

Grace a la fonction de hachage, la non-égalité est immédiate.

>>> A='123456789101112131415161718192021222324252627"'
>>> B='123456789101112131415161718192021222324252627"'
>>> h(A)

'c42012567482404030e362f0c3813c15"

>>> h(B)

'ebadle2edb893242fe25aad75dfccab6’

» Soit s1 et s2 deux chaines et h(s1) et h(s2) leurs empreintes.

» On a la garantie suivante :
Sih(s1)#h(s2) alors forcément s1#s2 (car h est une fonction)

» Les propriétés suivantes sont extrémement probables :
Sih(s1)=h(s2) on peut en pratique considérer que s1=s2 (on a 1
chance sur 340 282 366 920 938 463 463 374 607 431 768 211 455 de se tromper)
Si s1 et s2 sont tres proches, h(s1) et h(s2) sont tres différents.
14/40

Application aux ensembles PARTIE 11. FONCTIONS DE HACHAGE

» Supposons que 'on souhaite implémenter les ensembles par des listes
On réimplémente les ensembles pour des questions pédagogiques

def ajouter(L,x): [screpr |
for e in L:
if x == e: return # terminaison car = est déja dans L
L.append(x) # sinon, on ajoute x
return

» Pour ajouter un élément, je dois comparer avec tous les éléments.
S’il y a n éléments de taille T, il faudra faire n*T comparaisons.

» Pour gagner en efficacité, on stocke chaque élément avec son empreinte.

def ajouter(L,x): SCRIPT
hx=h(x) # je calcule l'empreinte de

for e in L:
(hy,y) = e # y est stocké avec son empreinte

if hx == hy: return # le programme termine
L.append((hx,x))
return

» Dorénavant je dois faire seulement N comparaisons d’empreintes.

15/40

V4 4
Résumé PARTIE 11. FONCTIONS DE HACHAGE

» Dans Python
Les ensembles sont implémentés de maniere bien plus élaborées.
Mais ils utilisent des tables de hachage.
L’ajout d’élément ne dépend pas de la taille des éléments de E.

» En informatique en général : on utilise les empreintes

e pour vérifier qu’un téléchargement correspond au bon fichier

On compare les empreintes (MD5 check sum)
Sil’empreinte est bonne, on a bien une version correcte du bon fichier

e pour stocker des mots de passe sans les révéler.
On stocke les empreintes
On compare avec 'empreinte du mot de passe fourni par l'utilisateur.
A aucun moment on ne stocke les mots de passe

Une empreinte ne permet pas de retrouver le mot de passe

e pour certifier la liste chainée d’une blockchain (bitcoin) ou de git.

16/40

Sommaire

& Partie 1. Ensembles

N

Partie 11. Fonctions de hachage

Partie 111. Dictionnaires

N\ N\

Partie 1v. Mémoisation

Partie v. Matrices

Y

N

Partie vi. Table des matiéres

17/40

Q_iest—ce ? PARTIE 111. DICTIONNAIRES

» Un dictionnaire est une collection de couples c1é:valeur.
clé est forcément non mutable;

valeur peut étre modifiée.

>>> mon_panier = { 1243 , 1123
>>> mon_panier
{'pommes': 243, 'poires': 123}

» On accede aux valeurs en utilisant les clés comme indices.

>>> mon_panier[]
123
>>> mon_panier[]
243

» Un dictionnaire vide se note {} ou mieux dict ()

» Toutes les clés doivent étre distinctes

>>> { 1243 1123, :23 }
{'pommes': 23, 'poires': 123}

18/40

Accés aux éléments PARTIE 1. DICTIONNAIRES

» L’accés a une valeur est extrémement rapide.
C’est le principal intérét des dictionnaires.
Les dictionnaires utilisent des tables de hachage

» La recherche est unidirectionnelle

on va de la clé vers les valeurs

» La clé doit étre non mutable.
Typiquement des chaines et des nombres.
On peut utiliser des tuples ne contenant que des éléments non mutables.

>>> dico = { :234 , 2:[3,4,5] , 3.5: }
>>> dico[3.5]

'Bonjour'

>>> dicol[]

234

>>> dicol] # 'Bonjour' est une waleur !

KeyError: 'Bonjour'

19/40

Exceptions

PARTIE 1. DICTIONNAIRES

» Si on utilise une clé qui n’existe pas, une exception est levée.
Pour savoir si une clé existe on peut utiliser mot-clé in

>>> partiel = { :15 , 113, :9}
>>> partiell]

KeyError: 'Gustave'

>>> in partiel # "Gustave" est-il une clé ?
False

» On veut affecter a note la valeur associée a I’étudiant étu
Si une telle clé n’existe pas, on pose note=

- [scrrer | if &tu in partiel: [SCRIPT]
note = partiel[étu] note = partiel[étu]
except KeyError: else:

note = note =

» Ou plus simplement en une ligne avec la méthode get

>>> partiel.get(s
15

>>> partiel.get(s
'ABS'

)

20/40

Modifier un dictionnaire PARTIE 1. DICTIONNAIRES

» Un dictionnaire est mutable : il est modifiable.

» On peut modifier la valeur associée a une clé en utilisant ’affectation.

>>> dico = { 11: , 22: , 33: }
>>> dico[22]=
>>> dico

{11: 'unu', 22: 'du', 33: 'tri'}

» On peut ajouter un nouveau couple c1é:valeur en utilisant I’affectation

>>> dico

{11: 'unu', 22: 'du', 33: 'tri'}

>>> dico[44]=

>>> dico

{11: 'unu', 22: 'du', 33: 'tri', 44: 'kvar'}

» On peut supprimer un couple (c1é:valeur) avec la commande pop

>>> dico.pop(33)

'tri'

>>> dico

{11: 'unu', 22: 'du', 44: 'kvar'}

21/40

Itération PARTIE 1. DICTIONNAIRES

» On peut parcourir un dictionnaire en parcourant les clés ou les valeurs.

def clés(dico): [scripr | def valeurs(dico): [scruet |
for k in dico.keys(): for v in dico.values():
v = dicol[k] # pas d'accés auzx clés
print (£) print(v,end=' ')
print('")

>>> naissancel[1=1615

>>> naissancel 1=1617

>>> naissancel[1=1620

>>> naissancel]=1615

>>> clés(naissance)

Athos (1615)

Porthos (1617)

Aramis (1620)

d’Artagnan (1615)

>>> valeurs(naissance) #une valeur n'est pas forcément unique
1615 1617 1620 1615

22/40

Itérations : Clés et valeurs PARTIE 1. DICTIONNAIRES

» A quoi correspondent dico.keys() et dico.values() ?

>>> naissance.keys()

dict_keys(['Athos', 'Porthos', 'Aramis', 'd’Artagnan'])
>>> naissance.values()

dict_values([1615, 1617, 1620, 1615])

> Ce sont des vues (view).
Ce ne sont pas des listes!
Mais ce sont des objets itérables.
On peut les convertir en tuples, ensembles ou listes.

>>> list(naissance.keys())

['Athos', 'Porthos', 'Aramis', 'd’Artagnan']
>>> set(naissance.values())

{1617, 1620, 1615}

» On peut itérer directement sur un dictionnaire.

C’est comme si on itérait sur les clés.

for k in dico.keys(): |« [for k in dico:

23/40

Exemple 3 njectivité PARTIE 1. DICTIONNAIRES

» En mathématique une application est injective si :
f(x) = f(y) implique x = y, dit autrement, si x # y alors f(x) = f(y)

» On cherche a savoir si un dictionnaire est injectif.
C’est-a-dire si chaque valeur est unique

def est_injectif(dico): \m

for k1 in dico:
for k2 in dico:
if k1!=k2 and dicol[kl]==dico[k2]:
return # collision !

return

» On peut aussi comparer la taille des ensembles de clés et de valeurs.

def est_injectif(dico): [scrrpt|
nb_clés = len(set(dico.keys()))
nb_values = len(set(dico.values()))
return nb_clés==nb_values

>>> est_injectif (naissance)
False

>>> est_injectif ({ 1: , 2@ , 3: i)

True

24/40

Sommaire

& Partie 1. Ensembles

N

Partie 11. Fonctions de hachage

|\

Partie 111. Dictionnaires

Partie 1v. Mémoisation

Partie v. Matrices

N\ N\

N

Partie vi. Table des matiéres

25/40

Principes 3 exemple de la factorielle PARTIE 1v. MEMOISATION

» Objectif : mémoriser les calculs déja faits pour pouvoir les réutiliser.

» Exemple :
on calcule 100! c’est « long », il faut 100 multiplications.
on calcule ensuite 103! : il faut 103 multiplications.
Si on avait mémorisé 100!, il aurait suffit de 3 multiplications.
car 103! = 100! * 101 * 102 * 103

» 11 suffit de stocker les résultats dans un dictionnaire.
n sera la clé

le résultat de fact (n) sera la valeur.

» Principe de 'algorithme
Sin est une clé du dictionnaire, on renvoie la valeur associée.

Sinon, on calcule v=n*fact (n-1) et on ajoute n:v dans le dictionnaire.

» Cette méthode s’appelle la mémoisation.

26/40

Implémentation de la factorielle PARTIE 1v. MEMOISATION

mémoire_cache = { 0:1 } # fact(0)=1 SCRIPT

def fact(n):
global mémoire_cache # global est facultatif
on ne modifie pas l'ensemble mais son contenu
if n in mémoire_cache:
return mémoire_cache[n]
else:
v = nxfact(n-1)
mémoire_cache[n]=v

return v
>>> from import time
>>> len(mémoire_cache)
1
>>> t=time(); x=fact(800); t800=time()-t; len(mémoire_cache)
801
>>> t=time(); x=fact(810); t810=time()-t; len(mémoire_cache)
811

>>> print (£810/t800)
0.01189127972819932

>>> print(f)
1.2%

(]

» Le calcul de fact (810) est 100 fois plus efficace que celui de fact (800)

27/40

M¢émoisation et Fibonacci PARTIE 1v. MEMOISATION

» On a rencontré des récurrences doubles. Exemple : la suite de Fibonacci.
Tres peu efficaces

Les mémes calculs sont faits de nombreuses fois.

e [sCrrpT |

if n < 2: On souhaite retenir les
else:,feturn L résultats intermédiaires
return fib(n-1) + fib(n-2) (mémoisation)

fib(99) fib(98)

[£ib(98) | [fib(on) | [£ibO7)| [£ib(96) |

28/40

Implémentation de Fibonacci PARTIE 1v. MEMOISATION

» Soit T, le nombre d’appels récursif lors du calcul de £ib(n) on a
14T, =2-fib(n) car 1+ T, vérifie la méme formule de récurrence que

fib(n) (mais en partant de 2 au lieu de 1)

(1 +Tn) = (1 +Tn71) + (1 + Tn72)

T,=1+T_1+Ty_p
(1+T0)=(1+T1)=2

et donc {
TO = Tl =1
» Pour calculer £ib(100) il faut donc 2-£ib(100) — 1 appels récursifs
Supposons que le calcul ne prenne que 10712 s par appel ;

le temps nécessaire sera de = 10%s = 36 années.

mem = dict() m

def fib(n):
if n==0 or n==1:
mem[n] = 1
elif n not in mem:
mem[n] = fib(n-1)+fib(n-2)
return mem[n]

>>> fib(100) #Quasi instantané
573147844013817084101

Le nouvel arbre d’appels est un « peigne »

qui compte seulement 201 appels récursifs. 29/s0

Sommaire

& Partie 1. Ensembles

N

Partie 11. Fonctions de hachage

|\

Partie 111. Dictionnaires

N

Partie 1v. Mémoisation

|

Partie v. Matrices

N

Partie vi. Table des matiéres

30/40

Définitions PARTIE V. MATRICES

» Nous avons représenté une matrice 2 x 2 par une liste de listes (cours 7).

» Généralisons cette idée aux matrices m xn (m lignes et n colonnes).

>>> A = [[0, 11, [1, 21, [2, 3]]
>>> len(A)
3
0 1 Ao Aga >>> (A[0], len(A[01))
A: 1 2 == AIO All ([O; 1], 2)
2 5 >>> A[2] [1]
2 3 Az)o AZ,I 3

» Les lignes et colonnes sont numérotées a partir de 0.
len(A) donne le nombre de lignes (hauteur)
len(A[0]) donne le nombre de colonnes (largeur)
A[1i] donne la ligne d’indice 1i
A[1i] [co] donne le coefficient a la ligne 11 et a la colonne co : Aj; ¢,

et pour la colonne d’indice co?

def dimensions(A): # Fonction utile pour la suite SCRIPT
return (len(A),len(A[0])) # nombre de lignes et de colomnes

31/40

Extraire une colonne PARTIE V. MATRICES

» On ne peut accéder directement qu’aux lignes.

» Comment accéder aux colonnes ?

def colonne(A, co): \m
res = []
for 1i in range(len(A)):
res.append (A[1i] [col)
return res

» En plus pythonesque, en utilisant les compréhensions de listes.

def colonne(A, co): SCRIPT
return [A[1i][co] for 1i in range(len(A))]

>>> A = [[0, 11, [1, 2], [2, 3]1]
>>> len(A)
0 1 3
_ >>> colonne(A,0)
A=|1 2 [0, 1, 2]
2 3 >>> colonne(A,1)
(1, 2, 3]

32/40

Reconnaitre une matrice

PARTIE V. MATRICES

» Comment déterminer si un objet Python est une matrice ?

c’est une liste de listes

Les lignes et les colonnes doivent étre non vides

toutes les colonnes ont la méme taille

def est_matrice(A):

return
A[0] doit étre une liste

return
#Toutes les lignes doivent
for ligne in A:
if type(ligne) != list
return
return

A doit étre une liste mon—-vide
if type(A) != list or A==[]:

if type(A[0]) != list or A[0]==[]:

SCRIPT

non-vide

étre des listes de méme taille

or len(ligne) != len(A[0]):

>>> est_matrice([])

False

>>> est_matrice([[],[],[1])
False

>>> est_matrice(12)

False

>>> est_matrice([1,2,3])

False

>>> est_matrice([[1,2],[3,4]1,[5,61])
True

>>> est_matrice([[1,2],[3],[5,6]11)
False

33/40

Q_glques matrices particuliéres PARTIE v. MATRICES

» Une matrice nulle est une matrice ne contenant que des 0

def matrice_nulle(n,m): m
A=[] Matrice 2x3 nulle :
for ligne in range(n):
L=[]

for colonne in range(m):
L.append (0)
A.append (L)
return A

(=N -]
oS O O

» Une matrice identité est une matrice carrée contenant des 1 sur la

diagonale et des 0 ailleurs.

Matrice identité 4 x4 :
def matrice_identité(n): SCRIPT

A = matrice_nulle(n,n) 1 0 0 0

for i in range(n):
Ali][i]1=1 0 100
return A 0O 0 1 0
0O 0 0 1

» Exercice : écrire ces fonctions en une ligne avec des compréhensions de liste

34/40

Calcul de l’opposé PARTIE V. MATRICES

» L’opposé d’une matrice est formé des opposés des élements initiaux.

. A WY o B
(0] ose de €es
L2 -3 4 3 —4

» Comment rédiger un tel programme ?
On crée une matrice nulle de la bonne taille

On y affecte ensuite les bonnes valeurs

def opposé(A): SCRIPT

(n,m) = dimensions(A)
B = matrice_nulle(n,m)
for i in range(n):
for j in range(m):
B[il[j1 = - A[i][j]

return B

» On est obligé de partir d’'une nouvelle matrice.
En effet si j’écris B=A, toute modification de B affectera A.
Voir le cours 5 sur la gestion de la mémoire concernant les listes.

35/40

Calcul de la trace PARTIE V. MATRICES

» La trace d’une matrice est la somme des éléments diagonaux.

Latracede Avaut 1+6+2+7=16

[NI S TN
gl o= N DN
AN NN W
g W 00 A

» Le concept n’a de sens que dans une matrice carrée

def trace(A): SCRIPT

(n,m)=dimensions(A)
ifn!'=m:
raise ValueError()
tr = 0
for i in range(n):
tr = tr + A[i][i]
return tr

36/40

Calcul de la somme PARTIE V. MATRICES

» On peut ajouter deux matrices coefficient par coefficient

les matrices doivent étre de méme dimensions.
30 1 20 4 60 3 _ 34 61 23
3 11 50 20 -1 7 a 23 10 57

def somme(A,B): SCRIPT

(n,m) = dimensions(A)
if (n,m) !'= dimensions(B):
raise ValueError()
C = matrice_nulle(n,m)
for i in range(n):
for j in range(m):
C[i][j]1 = A[i1[3]1 + B[il[j]

return C

37/40

Calcul du produit PARTIE V. MATRICES

» On peut multiplier deux matrices entre elles [Wikipédia]
la longueur de la premiére doit étre égale a la hauteur de la deuxieme

On pose N ce nombre en commun.

N
La matrice produit M = AB est définie par M;; = Z Ajjx By
k=1
def coefficient_produit(A,B,i,j): SCRIPT
(n,m)=dimensions (A)
c=0

for k in range(n):# de 0 ¢ n-1 (et non comme en math de 1 d n)
c = c + A[i] [k]*B[k] [j]
return c

def produit(A,B):

(la,ca) = dimensions(A) ; (1b,cb) = dimensions(B)
if 1b != ca:

raise ValueError()
C = matrice_nulle(la,cb)
for i in la:

for j in cb:

C[il[j] = coefficient_produit(A,B,i,j)

return C

» On utilise une sous-fonction pour éviter d’avoir trop de for imbriqués.
38/40

https://fr.wikipedia.org/wiki/Produit_matriciel

Application : images bitmaps PARTIE V. MATRICES

» Une image est un tableau de pixels.

» Un pixel (en noir et blanc) ne peut avoir que deux valeurs :
0 : pixel blanc

1 : pixel noir

» Une image pourra donc étre représentée par une matrice de 0 et de 1

» Voir TP!

39/40

Merci pour votre attention

Questions

Concours Tk
& Partie 1. Ensembles
Type de données
Ensembles Python
Acces aux éléments d’un ensemble
Appartenance et inclusion
Nombre d’éléments d’'un ensemble
Construire un ensemble
Modifier un ensemble
Opérations sur les ensembles
Que puis-je mettre dans un ensemble?
@ Partie 11. Fonctions de hachage
Quest-ce?

Pourquoi?

Cours 8 — Ensembles, dictionnaires et matrices

Application aux ensembles
Résumé

& Partie ur. Dictionnaires
Qulest-ce?
Accés aux éléments
Exceptions
Modifier un dictionnaire
Itération
Itérations : Clés et valeurs
Exemple : injectivité

& Partie 1v. Mémoisation
Principes : exemple de la factorielle
Implémentation de la factorielle

Mémoisation et Fibonacci

Implémentation de Fibonacci

& Partie v. Matrices
Définitions
Extraire une colonne
Reconnaitre une matrice
Quelques matrices particuliéres
Calcul de Popposé
Calcul de la trace
Calcul de la somme
Caleul du produit

Application : images bitmaps

@ Partie v1. Table des matiéres

	Concours Tk
	Ensembles
	Type de données
	Ensembles Python
	Accès aux éléments d'un ensemble
	Appartenance et inclusion
	Nombre d’éléments d'un ensemble
	Construire un ensemble
	Modifier un ensemble
	Opérations sur les ensembles
	Que puis-je mettre dans un ensemble ?

	Fonctions de hachage
	Qu’est-ce ?
	Pourquoi ?
	Application aux ensembles
	Résumé

	Dictionnaires
	Qu'est-ce ?
	Accès aux éléments
	Exceptions
	Modifier un dictionnaire
	Itération
	Itérations : Clés et valeurs
	Exemple : injectivité

	Mémoïsation
	Principes : exemple de la factorielle
	Implémentation de la factorielle
	Mémoïsation et Fibonacci
	Implémentation de Fibonacci

	Matrices
	Définitions
	Extraire une colonne
	Reconnaître une matrice
	Quelques matrices particulières
	Calcul de l'opposé
	Calcul de la trace
	Calcul de la somme
	Calcul du produit
	Application : images bitmaps

	Table des matières

