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Concours Tk Annonces

▶ Il y aura pour les volontaires un projet Tk noté.

▶ La note sera un bonus

▶ Les règles et les objectifs :
▶ seront données en détail la semaine prochaine.
▶ Vous devez utiliser Python et Tk (et rien d’autre).
▶ Votre code doit être lisible, propre et commenté.
▶ Votre code doit être générique et paramétrable.
▶ Votre code doit fonctionner sans problème sur les machines Linux du

Petit Valrose.
▶ Date limite : date de l’examen final ?
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Type de données Partie i. Ensembles

▶ Nous avons eu l’occasion de voir plusieurs types de données.

Des types simples
>>> type(-29)
<class 'int'>
>>> type(42.23)
<class 'float'>
>>> type(True)
<class 'bool'>

shell

Des types des
séquences

>>> type((1,2,3))
<class 'tuple'>
>>> type([11,1.2])
<class 'list'>
>>> type("Salut à toi")
<class 'str'>

shell

▶ Nous allons voir deux autres types

>>> type({1,2,3}) # Les ensembles
<class 'set'>
>>> type({'prix':1.2 , 'nom':'banane'}) # Les dictionnaires
<class 'dict'>

shell
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Ensembles Python Partie i. Ensembles

▶ Un ensemble en Python est une collection finie d’objets
▶ Une collection sans répétition et sans ordre

▶ Un ensemble n’est pas une séquence !
▶ On ne peut pas accéder aux éléments via des indices.���E[i]

▶ Ils sont notés avec des accolades comme en mathématiques.

>>> { 1, 2, 3, 1, 2 } # Ni répétition
{1, 2, 3}
>>> { 1, 2, 3 } == { 3, 1, 2 } # ni ordre
True
>>> {False, 'bleu', 2, 'bleu'} == {2, False, 'bleu', 2, 2}
True

shell

▶ L’ensemble vide est noté : set() (et non pas {} qui est un dictionnaire)

>>> type({})
<class 'dict'>
>>> type(set())
<class 'set'>
>>> set()
set()

shell
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Accès aux éléments d’un ensemble Partie i. Ensembles

▶ La notation���E[i] n’a pas de sens
▶ Les éléments ne sont pas ordonnés : ils n’ont donc pas d’indice.

>>> E = { 22, 31.2, 'Salut', True }
>>> E[2]
Traceback (most recent call last):

File "<console>", line 1, in <module>
TypeError: 'set' object is not subscriptable

shell

▶ On peut parcourir un ensemble avec une boucle for :
▶ L’ordre n’est pas respecté (car il n’y a pas d’ordre !)

>>> for x in E:
... print(x)
True
Salut
22
31.2

shell
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Appartenance et inclusion Partie i. Ensembles

▶ L’opérateur in permet de savoir si un élément appartient à un ensemble

>>> A = {22, 'Salut'} ; B = { 22, 31.2, 'Salut', True }
>>> print( 31.2 in A , 31.2 in B)
False True

shell

▶ En mathématiques, 𝐴 est inclus dans 𝐵 si tout élément de 𝐴 appartient à 𝐵
▶ 𝐴 ⊆ 𝐵 ≡ ∀𝑥 ∈ 𝐴, 𝑥 ∈ 𝐵

▶ Traduisons cela en Python avec une boucle for

def inclusion(A,B):
for x in A:

if not(x in B):
return False

return True

scRipt >>> inclusion(A,B)
True
>>> inclusion(B,A)
False
>>> inclusion(A,A)
True

shell

▶ Ou directement avec l’opérateur <= (si on veut l’inclusion stricte : <) :

>>> print( A<=B , B<=A , A<=A, A<A , set()<A)
True False True False True

shell
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Nombre d’éléments d’un ensemble Partie i. Ensembles

▶ En mathématiques, le cardinal est le nombre d’éléments d’un ensemble.

def cardinal(E):
c = 0
for x in E:

c=c+1
return c

scRipt

>>> cardinal({2,2,1,1,3,3,2,1,2,3})
3
>>> {2,2,1,1,3,3,2,1,2,3} # ne contient bien que 3 éléments
{1, 2, 3}
>>> cardinal(set())
0

shell

▶ Comme d’habitude,((((((((((
on s’embête pour rien : fonction len

▶C’est important pédagogiquement de savoir réécrire les fonctions de base.

>>> len({2,2,1,1,3,3,2,1,2,3})
3
>>> len(set())
0

shell
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Construire un ensemble Partie i. Ensembles

▶ On peut construire un ensemble en donnant directement ses valeurs

>>> E = {1 , 2 , 3 , 4}
>>> E
{1, 2, 3, 4}

shell

▶ De même que les listes, on peut les construire par compréhension.

>>> L = [ x%10 for x in range(100) if x%6==0 ]
>>> L # L est une liste
[0, 6, 2, 8, 4, 0, 6, 2, 8, 4, 0, 6, 2, 8, 4, 0, 6]
>>> E = { x%10 for x in range(100) if x%6==0 }
>>> E # E est un ensemble
{0, 2, 4, 6, 8}

shell

▶ On peut utiliser la fonction de conversion set (voir cours 5 page 18)

>>> set('abc')
{'b', 'a', 'c'}
>>> set(['a','b','c'])
{'b', 'a', 'c'}
>>> set(('a','b','c'))
{'b', 'a', 'c'}

shell
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Modifier un ensemble Partie i. Ensembles

▶ Les ensembles sont mutables : Cela signifie que l’on peut les modifier.

▶ On peut ajouter un élément avec la méthode add

>>> E # E contient 3 éléments
{1, 2, 3}
>>> E.add(12)
>>> E # E contient maintenant 4 éléments
{1, 2, 3, 12}
>>> E.add(1)
>>> E # E contient toujours 4 éléments
{1, 2, 3, 12}

shell

▶ On peut supprimer un élément avec la méthode remove

>>> E = {'Salut',False,(1,2,3),'Ha ha ha'}
>>> E.remove('HA ha ha')
Traceback (most recent call last):

File "<console>", line 1, in <module>
KeyError: 'HA ha ha'
>>> E
{False, 'Ha ha ha', 'Salut', (1, 2, 3)}
>>> E.remove('Ha ha ha')

shell
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Opérations sur les ensembles Partie i. Ensembles

▶ On veut écrire l’union de deux ensembles.

def union(A,B):
E = set() # ensemble vide
for x in A:

E.add(x)
for x in B:

E.add(x)
return E

scRipt
>>> A={1,2,3,4}
>>> B={2,4,6,8}
>>> union(A,B)
{1, 2, 3, 4, 6, 8}
>>> union(A,A)
{1, 2, 3, 4}

shell

▶ Comme toujours, la fonction existe déjà sous Python !
▶ L’union 𝐴∪𝐵 = { 𝑥 ∶ 𝑥 ∈ 𝐴 ou 𝑥 ∈ 𝐵 } se note A | B
▶ L’intersection 𝐴∩𝐵 = { 𝑥 ∶ 𝑥 ∈ 𝐴 et 𝑥 ∈ 𝐵 } se note A & B
▶ La différence 𝐴⧵𝐵 = { 𝑥 ∶ 𝑥 ∈ 𝐴 et 𝑥 ∉ 𝐵 } se note A - B

>>> A={1,2,3,4}
>>> B={2,4,6,8}
>>> A|B
{1, 2, 3, 4, 6, 8}

shell >>> A&B
{2, 4}
>>> A-B
{1, 3}

shell

▶ Exercice : écrire l’intersection et la différence sans utiliser d’opérateurs.

10/40



Que puis-je mettre dans un ensemble? Partie i. Ensembles

▶ Bonne question : essayons !

>>> { '123' , 'abc' } # str : immuable
{'123', 'abc'}
>>> { (1,2,3) , ('a','b','c') } # tuple : immuable
{(1, 2, 3), ('a', 'b', 'c')}
>>> { [1,2,3] , ['a','b','c'] } # list : mutable
Traceback (most recent call last):

File "<console>", line 1, in <module>
TypeError: unhashable type: 'list'
>>> { {1,2,3} , {'a','b','c'} } # set : mutable
Traceback (most recent call last):

File "<console>", line 1, in <module>
TypeError: unhashable type: 'set'

shell

▶ Un ensemble est mutable, mais ses éléments doivent être immuable.
▶ On peut faire des ensembles de tuple (ensembles de points du plan)
▶ On ne peut pas faire des ensembles de listes ou d’ensemble.

▶ Que signifie unhashable type du message d’erreur?
▶ En interne, les ensembles utilisent des fonctions de hachage.
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Qu’est-ce? Partie ii. Fonctions de hachage

▶ Qu’est-ce qu’une empreinte digitale ?
▶ C’est un marqueur biologique en théorie unique.
▶ Facile à stocker, « facile » à comparer, facile à obtenir

▶ Existe-il un équivalent numérique?
▶ Une fonction de hashage permet de construire une empreinte numérique.

▶ Exemple : la fonction md5
▶ Elle calcule une empreinte (digest) de 128 bits.
▶ On représente l’empreinte le plus souvent par son écriture hexadécimale

>>> from hashlib import md5
>>> def h(x):
... return md5(repr(x).encode()).hexdigest()
>>> h(3)
'eccbc87e4b5ce2fe28308fd9f2a7baf3'
>>> h([1,2,3])
'49a5a960c5714c2e29dd1a7e7b950741'
>>> h(min)
'0f61485fd84d673c233e28e1d2a5acfe'

shell
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Pourquoi? Partie ii. Fonctions de hachage

▶ À quoi ces fonctions servent-elles ?
▶ Elles permettent de créer un identifiant pour un objet quelconque.
▶ En particulier cela sert à comparer des données volumineuses.
▶ Sauriez-vous trouver la différence entre les deux chaînes?
▶ Grâce à la fonction de hachage, la non-égalité est immédiate.

>>> A='123456789101112131415161718192021222324252627'
>>> B='12345678910111213141516171819202l222324252627'
>>> h(A)
'c42012567482404030e362f0c3813c15'
>>> h(B)
'e5a41e2edb893242fe25aad75dfcca66'

shell

▶ Soit s1 et s2 deux chaînes et h(s1) et h(s2) leurs empreintes.

▶ On a la garantie suivante :
▶ Si h(s1)≠h(s2) alors forcément s1≠s2 (car h est une fonction)

▶ Les propriétés suivantes sont extrêmement probables :
▶ Si h(s1)=h(s2) on peut en pratique considérer que s1=s2 (on a 1

chance sur 340 282 366 920 938 463 463 374 607 431 768 211 455 de se tromper)
▶ Si s1 et s2 sont très proches, h(s1) et h(s2) sont très différents.
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Application aux ensembles Partie ii. Fonctions de hachage

▶ Supposons que l’on souhaite implémenter les ensembles par des listes
▶ On réimplémente les ensembles pour des questions pédagogiques

def ajouter(L,x):
for e in L:

if x == e: return # terminaison car x est déjà dans L
L.append(x) # sinon, on ajoute x
return

scRipt

▶ Pour ajouter un élément, je dois comparer avec tous les éléments.
▶ S’il y a n éléments de taille T, il faudra faire n*T comparaisons.

▶ Pour gagner en efficacité, on stocke chaque élément avec son empreinte.

def ajouter(L,x):
hx=h(x) # je calcule l'empreinte de x
for e in L:

(hy,y) = e # y est stocké avec son empreinte
if hx == hy: return # le programme termine

L.append((hx,x))
return

scRipt

▶ Dorénavant je dois faire seulement N comparaisons d’empreintes.
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Résumé Partie ii. Fonctions de hachage

▶ Dans Python
▶ Les ensembles sont implémentés de manière bien plus élaborées.
▶ Mais ils utilisent des tables de hachage.
▶ L’ajout d’élément ne dépend pas de la taille des éléments de E.

▶ En informatique en général : on utilise les empreintes

• pour vérifier qu’un téléchargement correspond au bon fichier
▶ On compare les empreintes (MD5 check sum)
▶ Si l’empreinte est bonne, on a bien une version correcte du bon fichier

• pour stocker des mots de passe sans les révéler.
▶ On stocke les empreintes
▶ On compare avec l’empreinte du mot de passe fourni par l’utilisateur.
▶ À aucun moment on ne stocke les mots de passe
▶ Une empreinte ne permet pas de retrouver le mot de passe

• pour certifier la liste chaînée d’une blockchain (bitcoin) ou de git.
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Qu’est-ce? Partie iii. Dictionnaires

▶ Un dictionnaire est une collection de couples clé:valeur.
▶ clé est forcément non mutable ;
▶ valeur peut être modifiée.

>>> mon_panier = {'pommes':243 , 'poires':123 }
>>> mon_panier
{'pommes': 243, 'poires': 123}

shell

▶ On accède aux valeurs en utilisant les clés comme indices.

>>> mon_panier['poires']
123
>>> mon_panier['pommes']
243

shell

▶ Un dictionnaire vide se note {} ou mieux dict()

▶ Toutes les clés doivent être distinctes

>>> {'pommes':243 , 'poires':123, 'pommes':23 }
{'pommes': 23, 'poires': 123}

shell
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Accès aux éléments Partie iii. Dictionnaires

▶ L’accès à une valeur est extrêmement rapide.
▶ C’est le principal intérêt des dictionnaires.
▶ Les dictionnaires utilisent des tables de hachage

▶ La recherche est unidirectionnelle
▶ on va de la clé vers les valeurs

▶ La clé doit être non mutable.
▶ Typiquement des chaînes et des nombres.
▶ On peut utiliser des tuples ne contenant que des éléments non mutables.

>>> dico = { 'un':234 , 2:[3,4,5] , 3.5:'Bonjour' }
>>> dico[3.5]
'Bonjour'
>>> dico['un']
234
>>> dico['Bonjour'] # 'Bonjour' est une valeur !
Traceback (most recent call last):

File "<console>", line 1, in <module>
KeyError: 'Bonjour'

shell
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Exceptions Partie iii. Dictionnaires

▶ Si on utilise une clé qui n’existe pas, une exception est levée.
▶ Pour savoir si une clé existe on peut utiliser mot-clé in

>>> partiel = { 'Alice':15 , 'Bob':13 , "Charline":9}
>>> partiel["Gustave"]
Traceback (most recent call last):

File "<console>", line 1, in <module>
KeyError: 'Gustave'
>>> 'Gustave' in partiel # "Gustave" est-il une clé ?
False

shell

▶ On veut affecter à note la valeur associée à l’étudiant étu
▶ Si une telle clé n’existe pas, on pose note="ABS"

try:
note = partiel[étu]

except KeyError:
note = "ABS"

scRipt if étu in partiel:
note = partiel[étu]

else:
note = "ABS"

scRipt

▶ Ou plus simplement en une ligne avec la méthode get

>>> partiel.get("Alice",'ABS')
15
>>> partiel.get("Gustave",'ABS')
'ABS'

shell
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Modifier un dictionnaire Partie iii. Dictionnaires

▶ Un dictionnaire est mutable : il est modifiable.

▶ On peut modifier la valeur associée à une clé en utilisant l’affectation.

>>> dico = { 11: 'unu' , 22:'Du' , 33:'tri' }
>>> dico[22]='du'
>>> dico
{11: 'unu', 22: 'du', 33: 'tri'}

shell

▶ On peut ajouter un nouveau couple clé:valeur en utilisant l’affectation

>>> dico
{11: 'unu', 22: 'du', 33: 'tri'}
>>> dico[44]='kvar'
>>> dico
{11: 'unu', 22: 'du', 33: 'tri', 44: 'kvar'}

shell

▶ On peut supprimer un couple (clé:valeur) avec la commande pop

>>> dico.pop(33)
'tri'
>>> dico
{11: 'unu', 22: 'du', 44: 'kvar'}

shell
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Itération Partie iii. Dictionnaires

▶ On peut parcourir un dictionnaire en parcourant les clés ou les valeurs.

def clés(dico):
for k in dico.keys():

v = dico[k]
print(f"{k} ({v})")

scRipt def valeurs(dico):
for v in dico.values():
# pas d'accès aux clés

print(v,end=' ')
print('')

scRipt

>>> naissance["Athos"]=1615
>>> naissance["Porthos"]=1617
>>> naissance["Aramis"]=1620
>>> naissance["d’Artagnan"]=1615
>>> clés(naissance)
Athos (1615)
Porthos (1617)
Aramis (1620)
d’Artagnan (1615)
>>> valeurs(naissance)#une valeur n'est pas forcément unique
1615 1617 1620 1615

shell
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Itérations : Clés et valeurs Partie iii. Dictionnaires

▶ À quoi correspondent dico.keys() et dico.values()?

>>> naissance.keys()
dict_keys(['Athos', 'Porthos', 'Aramis', 'd’Artagnan'])
>>> naissance.values()
dict_values([1615, 1617, 1620, 1615])

shell

▶ Ce sont des vues (view).
▶ Ce ne sont pas des listes !
▶ Mais ce sont des objets itérables.
▶ On peut les convertir en tuples, ensembles ou listes.

>>> list(naissance.keys())
['Athos', 'Porthos', 'Aramis', 'd’Artagnan']
>>> set(naissance.values())
{1617, 1620, 1615}

shell

▶ On peut itérer directement sur un dictionnaire.
▶ C’est comme si on itérait sur les clés.
▶ for k in dico.keys(): ⇔ for k in dico:
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Exemple : injectivité Partie iii. Dictionnaires

▶ En mathématique une application est injective si :
▶ 𝑓 (𝑥) = 𝑓 (𝑦) implique 𝑥 = 𝑦 , dit autrement, si 𝑥 ≠ 𝑦 alors 𝑓 (𝑥) ≠ 𝑓 (𝑦)

▶ On cherche à savoir si un dictionnaire est injectif.
▶ C’est-à-dire si chaque valeur est unique

def est_injectif(dico):
for k1 in dico:

for k2 in dico:
if k1!=k2 and dico[k1]==dico[k2]:

return False # collision !
return True

scRipt

▶ On peut aussi comparer la taille des ensembles de clés et de valeurs.

def est_injectif(dico):
nb_clés = len(set(dico.keys()))
nb_values = len(set(dico.values()))
return nb_clés==nb_values

scRipt

>>> est_injectif(naissance)
False
>>> est_injectif({ 1:'eins' , 2:'zwei' , 3:'drei' })
True

shell
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Principes : exemple de la factorielle Partie iv. Mémoïsation

▶ Objectif : mémoriser les calculs déjà faits pour pouvoir les réutiliser.

▶ Exemple :
▶ on calcule 100! c’est « long », il faut 100 multiplications.
▶ on calcule ensuite 103! : il faut 103 multiplications.
▶ Si on avait mémorisé 100!, il aurait suffit de 3 multiplications.
▶ car 103! = 100! * 101 * 102 * 103

▶ Il suffit de stocker les résultats dans un dictionnaire.
▶ n sera la clé
▶ le résultat de fact(n) sera la valeur.

▶ Principe de l’algorithme
▶ Si n est une clé du dictionnaire, on renvoie la valeur associée.
▶ Sinon, on calcule v=n*fact(n-1) et on ajoute n:v dans le dictionnaire.

▶ Cette méthode s’appelle la mémoïsation.
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Implémentation de la factorielle Partie iv. Mémoïsation

mémoire_cache = { 0:1 } # fact(0)=1

def fact(n):
global mémoire_cache # global est facultatif
# on ne modifie pas l'ensemble mais son contenu
if n in mémoire_cache:

return mémoire_cache[n]
else:

v = n*fact(n-1)
mémoire_cache[n]=v
return v

scRipt

>>> from time import time
>>> len(mémoire_cache)
1
>>> t=time(); x=fact(800); t800=time()-t; len(mémoire_cache)
801
>>> t=time(); x=fact(810); t810=time()-t; len(mémoire_cache)
811
>>> print(t810/t800)
0.01189127972819932
>>> print(f'{t810/t800:.1%}')
1.2%

shell

▶ Le calcul de fact(810) est 100 fois plus efficace que celui de fact(800)
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Mémoïsation et Fibonacci Partie iv. Mémoïsation

▶ On a rencontré des récurrences doubles. Exemple : la suite de Fibonacci.
▶ Très peu efficaces
▶ Les mêmes calculs sont faits de nombreuses fois.

def fib(n):
if n < 2:

return 1
else:

return fib(n-1) + fib(n-2)

scRipt
On souhaite retenir les
résultats intermédiaires

(mémoïsation)

fib(100)

fib(99)

fib(98)

... ...

fib(97)

... ...

fib(98)

fib(97)

... ...

fib(96)

... ...
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Implémentation de Fibonacci Partie iv. Mémoïsation

▶ Soit 𝑇𝑛 le nombre d’appels récursif lors du calcul de fib(n) on a
▶ 1+𝑇𝑛 = 2 ⋅fib(n) car 1+𝑇𝑛 vérifie la même formule de récurrence que

fib(n) (mais en partant de 2 au lieu de 1)

{ 𝑇𝑛 = 1+𝑇𝑛−1 +𝑇𝑛−2
𝑇0 = 𝑇1 = 1 et donc { (1+𝑇𝑛) = (1+𝑇𝑛−1)+ (1+𝑇𝑛−2)

(1+𝑇0) = (1+𝑇1) = 2
▶ Pour calculer fib(100) il faut donc 2 ⋅fib(100)−1 appels récursifs

▶ Supposons que le calcul ne prenne que 10−12 s par appel ;
▶ le temps nécessaire sera de ≈ 109s ≈ 36 années.

mem = dict()
def fib(n):

if n==0 or n==1:
mem[n] = 1

elif n not in mem:
mem[n] = fib(n-1)+fib(n-2)

return mem[n]

scRipt

>>> fib(100) #Quasi instantané
573147844013817084101

shell

Le nouvel arbre d’appels est un « peigne »
qui compte seulement 201 appels récursifs.

fib(100)

fib(99)

fib(98)

fib(97)

... fib(95)

fib(96)

fib(97)

fib(98)
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Définitions Partie v. Matrices

▶ Nous avons représenté une matrice 2×2 par une liste de listes (cours 7).

▶ Généralisons cette idée aux matrices 𝑚×𝑛 (𝑚 lignes et 𝑛 colonnes).

𝐴=(
0 1
1 2
2 3

) = (
𝐴0,0 𝐴0,1
𝐴1,0 𝐴1,1
𝐴2,0 𝐴2,1

)

>>> A = [[0, 1], [1, 2], [2, 3]]
>>> len(A)
3
>>> (A[0], len(A[0]))
([0, 1], 2)
>>> A[2][1]
3

shell

▶ Les lignes et colonnes sont numérotées à partir de 0.
▶ len(A) donne le nombre de lignes (hauteur)
▶ len(A[0]) donne le nombre de colonnes (largeur)
▶ A[li] donne la ligne d’indice li
▶ A[li][co] donne le coefficient à la ligne li et à la colonne co : 𝐴𝑙 𝑖,𝑐𝑜
▶ et pour la colonne d’indice co?

def dimensions(A): # Fonction utile pour la suite
return (len(A),len(A[0])) # nombre de lignes et de colonnes

scRipt
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Extraire une colonne Partie v. Matrices

▶ On ne peut accéder directement qu’aux lignes.

▶ Comment accéder aux colonnes?

def colonne(A, co):
res = []
for li in range(len(A)):

res.append(A[li][co])
return res

scRipt

▶ En plus pythonesque, en utilisant les compréhensions de listes.

def colonne(A, co):
return [A[li][co] for li in range(len(A))]

scRipt

𝐴=(
0 1
1 2
2 3

)

>>> A = [[0, 1], [1, 2], [2, 3]]
>>> len(A)
3
>>> colonne(A,0)
[0, 1, 2]
>>> colonne(A,1)
[1, 2, 3]

shell
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Reconnaître une matrice Partie v. Matrices

▶ Comment déterminer si un objet Python est une matrice?
▶ c’est une liste de listes
▶ Les lignes et les colonnes doivent être non vides
▶ toutes les colonnes ont la même taille

def est_matrice(A):
# A doit être une liste non-vide
if type(A) != list or A==[]:

return False
# A[0] doit être une liste non-vide
if type(A[0]) != list or A[0]==[]:

return False
#Toutes les lignes doivent être des listes de même taille
for ligne in A:

if type(ligne) != list or len(ligne) != len(A[0]):
return False

return True

scRipt

>>> est_matrice([])
False
>>> est_matrice([[],[],[]])
False
>>> est_matrice(12)
False

shell >>> est_matrice([1,2,3])
False
>>> est_matrice([[1,2],[3,4],[5,6]])
True
>>> est_matrice([[1,2],[3],[5,6]])
False

shell
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Quelques matrices particulières Partie v. Matrices

▶ Une matrice nulle est une matrice ne contenant que des 0
def matrice_nulle(n,m):

A=[]
for ligne in range(n):

L=[]
for colonne in range(m):

L.append(0)
A.append(L)

return A

scRipt
Matrice 2×3 nulle :

(
0 0
0 0
0 0

)

▶ Une matrice identité est une matrice carrée contenant des 1 sur la
diagonale et des 0 ailleurs.

def matrice_identité(n):
A = matrice_nulle(n,n)
for i in range(n):

A[i][i]=1
return A

scRipt Matrice identité 4×4 :

⎛
⎜⎜⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟
⎠

▶ Exercice : écrire ces fonctions en une ligne avec des compréhensions de liste
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Calcul de l’opposé Partie v. Matrices

▶ L’opposé d’une matrice est formé des opposés des élèments initiaux.

L’opposé de ( 1 −2
−3 4 ) est (−1 2

3 −4)

▶ Comment rédiger un tel programme?
▶ On crée une matrice nulle de la bonne taille
▶ On y affecte ensuite les bonnes valeurs

def opposé(A):
(n,m) = dimensions(A)
B = matrice_nulle(n,m)
for i in range(n):

for j in range(m):
B[i][j] = - A[i][j]

return B

scRipt

▶ On est obligé de partir d’une nouvelle matrice.
▶ En effet si j’écris B=A, toute modification de B affectera A.
▶ Voir le cours 5 sur la gestion de la mémoire concernant les listes.
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Calcul de la trace Partie v. Matrices

▶ La trace d’une matrice est la somme des éléments diagonaux.

𝐴=
⎛
⎜⎜⎜
⎝

1 2 3 4
5 6 7 8
9 1 2 3
4 5 6 7

⎞
⎟⎟⎟
⎠

La trace de 𝐴 vaut 1+6+2+7 = 16

▶ Le concept n’a de sens que dans une matrice carrée

def trace(A):
(n,m)=dimensions(A)
if n != m :

raise ValueError('Trace : matrice non carrée')
tr = 0
for i in range(n):

tr = tr + A[i][i]
return tr

scRipt
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Calcul de la somme Partie v. Matrices

▶ On peut ajouter deux matrices coefficient par coefficient
▶ les matrices doivent être de même dimensions.

(30 1 20
3 11 50) + ( 4 60 3

20 −1 7) = (34 61 23
23 10 57)

def somme(A,B):
(n,m) = dimensions(A)
if (n,m) != dimensions(B):

raise ValueError('Dimensions incompatibles')
C = matrice_nulle(n,m)
for i in range(n):

for j in range(m):
C[i][j] = A[i][j] + B[i][j]

return C

scRipt
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Calcul du produit Partie v. Matrices

▶ On peut multiplier deux matrices entre elles [Wikipédia]
▶ la longueur de la première doit être égale à la hauteur de la deuxième
▶ On pose 𝑁 ce nombre en commun.
▶ La matrice produit 𝑀 =𝐴𝐵 est définie par 𝑀𝑖,𝑗 =

𝑁
∑
𝑘=1

𝐴𝑖,𝑘 ×𝐵𝑘,𝑗

def coefficient_produit(A,B,i,j):
(n,m)=dimensions(A)
c = 0
for k in range(n):# de 0 à n-1 (et non comme en math de 1 à n)

c = c + A[i][k]*B[k][j]
return c

def produit(A,B):
(la,ca) = dimensions(A) ; (lb,cb) = dimensions(B)
if lb != ca:

raise ValueError('Dimensions incompatibles')
C = matrice_nulle(la,cb)
for i in la:

for j in cb:
C[i][j] = coefficient_produit(A,B,i,j)

return C

scRipt

▶ On utilise une sous-fonction pour éviter d’avoir trop de for imbriqués.
38/40

https://fr.wikipedia.org/wiki/Produit_matriciel


Application : images bitmaps Partie v. Matrices

▶ Une image est un tableau de pixels.

▶ Un pixel (en noir et blanc) ne peut avoir que deux valeurs :
▶ 0 : pixel blanc
▶ 1 : pixel noir

▶ Une image pourra donc être représentée par une matrice de 0 et de 1

▶ Voir TP !
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Merci pour votre attention
Questions

?
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