Séance 9 : Animations et algorithmes

L1 – Université Côte d'Azur

Exercice 1 – Algorithme d'Euclide (\star)

1. On cherche à calculer le PGCD de deux nombres entier. Par exemple, si n=21 et m=15, leur PGCD vaut 3. En effet 3 est un diviseur en commun à $21=3\times7$ et $15=3\times5$ et c'est même le plus grand possible.

Pour calculer ce PGCD, on fait un raisonnement par cas

- $-\,$ on se ramène au cas dans lequel $n \geq m$ quitte à échanger n et m
- − si n et m sont égaux, c'est fini; ils sont égaux à leur pgcd.
- sinon, le PGCD de n et m est égal au PGCD de n-m et m

Écrivez une fonction récursive affiche_et_calcule_pgcd_naïf(n,m) qui affiche les étapes du calcul du PGCD et renvoie le résultat. Par exemple,

```
>>> d=affiche_et_calcule_pgcd_naïf(21,15)

calcule le pgcd de n=21 et m=15

calcule le pgcd de n=6 et m=15

calcule le pgcd de n=15 et m=6

calcule le pgcd de n=9 et m=6

calcule le pgcd de n=3 et m=6

calcule le pgcd de n=6 et m=3

calcule le pgcd de n=3 et m=3

>>> print('Le PGCD de 21 et 15 vaut',d)

Le PGCD de 21 et 15 vaut 3
```

2. L'agorithme précedent n'est pas efficace. Par exemple si n=100 et m=12, il va falloir faire de nombreuses soustractions du nombre $12:100 \rightarrow 88 \rightarrow 76 \rightarrow 64 \rightarrow \cdots \rightarrow 4$. On peut calculer par avance le nombre de soustraction à faire (ici 8) en faisant la division euclidienne de 100 par 12; ce qui nous donne 8 reste 4.

On peut donc accélérer l'algorithme en passant non pas de n à n-m mais de n à n-qm, où q est le quotient de la division euclidienne de n par m. C'est le fameux algorithme d'Euclide.

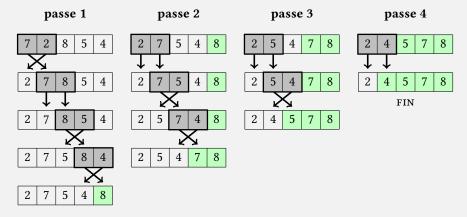
Écrivez une fonction affiche_et_calcule_pgcd(n,m) pour effectuer le calcul dans sa version accélérée. On fera attention au cas d'arrêt.

```
>>> d=affiche_et_calcule_pgcd(21,15)
calcule le pgcd de n=21 et m=15
calcule le pgcd de n=15 et m=6
calcule le pgcd de n=6 et m=3
calcule le pgcd de n=3 et m=0
>>> print('Le PGCD de 21 et 15 vaut',d)
Le PGCD de 21 et 15 vaut 3
```

3. Écrivez une fonction affiche_et_calcule_pgcd_while(n,m) qui utilise une boucle while plutôt que des appels récursifs.

L'algorithme de tri à bulles

Le tri à bulles est un algorithme de tri qui repose sur l'idée que tant que deux éléments adjacents ne sont pas dans le bon ordre, on doit les échanger pour se rapprocher d'une liste triée. Il s'agit donc d'un tri en place (on ne crée pas une nouvelle liste), où les seuls échanges se font entre des valeurs adjacentes. Plus précisément, on effectue n-1 passes (où n est la longueur de la liste à trier) et dans chaque passe on parcourt les couples de valeurs adjacentes en partant du début de la liste et on les échange si elles ne sont pas dans le bon ordre.



On peut donc voir le tri à bulle comme une variante du tri par sélection, où on commence par positionner la valeur la plus grande à sa position correcte, puis on répète le procédé sur la sous-liste qui s'arrête juste avant ce dernier élément. Notons enfin que si durant une passe on n'a fait aucun échange, la liste est triée, et on peut donc omettre les passes restantes.

Exercice 2 – Tri à bulles $(\star\star)$

1. Écrivez une fonction compare_et_échange (L,i) qui prend en argument une liste d'entiers L de longueur $n \ge 2$ et un entier $i \le n-2$ et qui échange les entiers aux indices i et i+1 si ils ne sont pas dans le bon ordre. Par exemple, on aura

```
>>> L = [3,4,5,1]
>>> compare_et_échange(L,0)  # -> ne change rien
>>> compare_et_échange(L,2)  # -> échange 5 et 1
>>> L
5 [3, 4, 1, 5]
```

Version qui marche dans tous les langages

```
def compare_et_échange_classique(L,i):
    if L[i] > L[i+1] :
        temp = L[i]
        L[i] = L[i+1]
        L[i+1] = temp
```

Version pythonesque

```
def compare_et_échange(L,i):
    if L[i] > L[i+1] :
        (L[i] , L[i+1]) = (L[i+1] , L[i])
```

2. Écrivez une fonction passe_tri_bulles(L,k) qui prend en argument une liste d'entiers L de longueur $n \ge 2$ et qui effectue la passe k de l'algorithme du tri à bulle.

```
def passe_tri_bulles(L,k):
    n = len(L)
    for i in range(n-k):
        compare_et_échange(L,i)
```

3. En déduire une fonction tri_bulles(L) qui trie en place la liste L par l'algorithme de tri à bulles.

```
def tri_bulles(L):
    n = len(L)
    for k in range(1,n): # de 1 à n-1
        passe_tri_bulles(L,k)
```

4. Optionnel : permettez à votre fonction de terminer avant la passe n-1 si durant une passe aucun échange n'est effectué.

```
# On retourne True s'il y a eu un échange
   def compare_et_échange2(L,i):
       if L[i] > L[i+1] :
           L[i] , L[i+1] = L[i+1] , L[i]
           return True
       else:
           return False
   # On retourne True s'il y a eu un échange
   def passe_tri_bulles2(L,k):
       changement=False
11
       for i in range(len(L)-k):
12
           b=compare_et_échange(L,i)
13
           changement = changement or b
       return changement
15
16
   def tri_bulles2(L) :
17
       for k in range(1,len(L)) :
           b=passe_tri_bulles2(L,k)
19
           if b==False:
20
               return # S'il n'y a eu aucun changement on s'arrête
```

Exercice 3 – Tri par comptage $(\star\star)$

Pour trier une liste de nombres entiers positifs ou nuls, on peut compter le nombre de fois que chaque nombre apparait dans la liste, puis créer une nouvelle liste qui contient chacun de ces nombres autant de fois que nécessaire. On obtient un algorithme de tri en temps linéaire en la taille de la liste, (mais aussi linéaire en la valeur du plus grand nombre).

1. Écrivez une fonction liste_nombre_occurrences (L) qui prend en argument une liste d'entiers positifs L et qui renvoie une liste N de longueur max (L)+1 telle que N[i] soit le nombre de fois où i apparaît dans L. Par exemple, liste_nombre_occurrences ([0,1,0,3,5]) renvoie [2,1,0,1,0,1] (2 occurences de 0, 1 occurence de 1, 0 occurence de 2, 1 occurence de 3, 0 occurence de 4 et 1 occurence de 5). On obtient bien une liste de longueur 6 (=5+1).

```
def liste_nombre_occurrences(L):
    n = max(L) + 1 # vous devez savoir écrire max !
    N = [0]*n
    for i in range(len(L)):
        e = L[i] # On trouve un e -> on incrément N[e]
        N[e] = N[e] + 1
    return N
```

2. Écrivez une fonction crée_liste_triée(N) qui prend en argument une liste N d'entiers positifs ou nuls et qui renvoie la liste Lt composée de len(N) blocs (possiblement de longueur nulle), le *i*-ème bloc étant de longueur N[i]. Par exemple, crée_liste_triée([2,1,0,1,0,1]) renvoie [0,0,1,3,5].

Version peu efficace

```
def crée_liste_triée_inefficace(N):
    Lt = []
    for j in range(len(N)):
        k = N[j] # j doit être présent k fois dans la liste Lt
        Lt = Lt + [j] * k
    return Lt
```

Version plus efficace avec append. On fait une boucle pour faire k fois Lt.append(j)

3. (bonus) Cherchez une solution qui n'utilise pas de concaténation de liste ni la méthode append, mais uniquement une allocation de liste remplie de 0 (L = [0 for i in range(n)]) et des mutations de contenu (L[i] = ...)

```
# On utilise deux indices j pour N : N[j] et
                             i pour Lt : Lt[i]
2
  # j est géré par une boucle for
  # i est géré manuellement.
  def crée_liste_triée_efficace(N):
      Lt = [0] * sum(N)
      i=0
      for j in range(len(N)):
          k = N[j]
           for _ in range(k): # plutôt que de définir une variable choucroute inutile, on
10
               Lt[i] = j
                              # peut la remplacer par « _ ». La variable n'a plus de nom
11
               i = i+1
12
```

4. En déduire une fonction tri_comptage(L) qui prend en argument une liste d'entiers positifs ou nuls et qui renvoie une nouvelle liste de même contenu, mais triée.

```
def tri_comptage(L):
   N = liste_nombre_occurrences(L)
   Lt = crée_liste_triée_efficace(N)
   return Lt
```

Exercice 4 − Boucle while: le drapeau hollandais (**)

Le problème du drapeau hollandais est un classique des exercices de programmation promu par Edgser W. Dijkstra, un des « pères fondateurs » de l'informatique en tant que discipline scientifique, qui a laissé son nom dans des domaines aussi variés que l'algorithmique et les systèmes d'exploitations.

Le problème est le suivant : on dispose d'une liste L contenant trois types de valeurs : 'B' (bleu), 'W' (blanc), et 'R' (rouge). Le but est d'écrire une fonction qui trie la liste L *en place* ¹ de sorte que les couleurs apparaissent dans l'ordre du drapeau hollandais ('B'<'W'<'R'). L'algorithme consiste à diviser la liste en quatre zones consécutives, voir dessin ci-dessous, et à réduire à chaque étape la zone « jaune » des valeurs qui ne sont pas encore triées.

^{1.} On pourrait envisager un tri par comptage pour ce problème, mais ce ne serait pas un tri en place (le comptage requiert de créer une nouvelle liste). L'originalité de l'algorithme présenté dans cet exercice est de faire un tri en place de même complexité que le tri par comptage, i.e. linéaire en la taille de la liste, le nombre de valeurs différentes dans la liste étant considéré comme une constante (ici 3).

Plus précisément, votre fonction utilisera en une boucle while et manipulera les variables i, b et r. À chaque tour de boucle, il faudra réaliser l'une des actions ci-dessous, selon la couleur de la valeur de L[i]:

- si L[i] est bleu, on échange L[i] avec L[b], on avance b et on avance i
- − si L[i] est rouge, on échange L[i] avec le dernier jaune, et on recule r
- si L[i] est blanc, on avance i
- Comment sont initialisées les variables b, i, et r? Quelle est la condition de sortie de la boucle?
 Initialisation des variables : b=0, i=0 et r=n
 Test de fin i<r/p>
- 2. Écrivez la fonction tri_hollandais(L) en lui demandant d'afficher les étapes intermédiaires.

```
# La fonction échange n'est pas indispensable mais elle permet de gagner en
   # lisibilité
   def échange(L,i,j):
        (L[i], L[j]) = (L[j], L[i])
   def tri_hollandais(L):
       n = len(L)
       (b,i,r) = (0,0,n)
       print(L)
10
       while (i<r) :</pre>
            if L[i] == 'B' :
12
                échange(L,i,b)
13
                i = i+1
14
                b = b+1
15
            elif L[i] == 'R' :
16
                échange(L,i,r-1)
17
                r = r-1
18
            else :
                i = i+1
20
            print(L)
```

Exercice 5 – Tri fusion $(\star\star)$

L'algorithme de tri fusion est un algorithme classique de tri de liste par récurrence. Il est basé sur une approche « diviser pour régner » et de complexité asymptotique dans le pire cas $O(n \cdot \log(n))$. L'algorithme peut être décrit ainsi :

- − soit *L* la liste à trier.
- − si *L* a moins de 2 éléments, elle est triée
- sinon on note L_1 et L_2 les deux demi-listes obtenues en coupant L en son milieu, avec L_1 contenant l'élément de position médiane si L est de longueur impaire. Par exemple, si $L = [5, 1, 3, 4, 2], L_1 = [5, 1, 3]$ et $L_2 = [4, 2]$
- on trie L_1 et L_2 récursivement (par exemple, $L_1 = [1, 3, 5]$ et $L_2 = [2, 4]$).
- on fusionne L_1 et L_2 (par exemple, [1, 2, 3, 4, 5]).
- 1. Écrivez une fonction fusion(L1,L2) qui prend en arguments deux listes triées L_1 et L_2 et qui renvoie une nouvelle liste contenant les contenus de L_1 et L_2 fusionnés.

```
solution classique : approche recursive (simple, lisible mais léger surcoût)
```

```
def fusion(L1,L2) :
    if L1 == [] :
        return L2
    elif L2 == [] :
        return L1
    elif L1[0] < L2[0] :
        return [L1[0]] + fusion( L1[1:] , L2 )
    else :
        return [L2[0]] + fusion( L1 , L2[1:] )</pre>
```

solution 2 sans récursion (portable dans tout langage, mais plus subtile)

```
def fusion2(L1,L2) :
       i = 0 # indice dans L1
       j = 0
       # On commence par créer une liste de la bonne taille
       n = len(L1) + len(L2)
       L = [0] * n
       # On aura trois indices
       i=0 # pour L1
       j=0 # pour L2
       for k in range(n) : # pour L
10
           # Si on a ajouté tous les élèments de L1
           # on ajoute alors ceux de 12
12
           if i == len(L1):
               L[k] = L2[j]
               j = j+1
           # Si on a ajouté tous les élèments de L2
16
           # on ajoute alors ceux de l1
17
           elif j == len(L2) :
               L[k] = L1[i]
               i = i+1
20
           # Sinon on ajoute le plus petit élèment
21
           # entre L1[i] et L1[j]
22
23
           else :
               if L1[i] > L2[j] :
24
                   L[k] = L2[j]
25
                   j = j+1
               else :
27
                   L[k] = L1[i]
28
                    i = i+1
       return L
```

solution 3 itérative avec pop et append (pythonesque)

```
def fusion3(L1,L2) :
       res = []
       while True : # On s'arrête quand L1 ou L2 est vide
           if L1 == [] :
               return res + L2
           if L2 == [] :
               return res + L1
           else :
               if L1[0] < L2[0] :
                   n = L1.pop(0)
10
               else :
11
                   n = L2.pop(0)
12
               res.append(n)
```

2. En déduire une fonction définie par récurrence tri_fusion(L) qui renvoie une nouvelle liste contenant le résultat du tri de *L*.

```
def tri_fusion(L):
    if len(L) < 2:
        return L
    m = len(L)//2
    L1 = tri_fusion(L[:m])
    L2 = tri_fusion(L[m:])
    return fusion(L1,L2)</pre>
```

Exercice 6 – Exponentiation rapide ($\star \star \star$)

On considère la fonction suivante pour le calcul de x puissance n

```
def puissance(x,n):
    acc = 1
    for i in range(n):
        acc = acc * x
    return acc
```

- 1. Combien de multiplications sont nécessaires pour calculer x^n avec cette méthode? *Il faut n multiplications*
- 2. Écrivez une fonction qui calcule x^n en $O(\log(n))$ multiplications.

```
# Cours 2 !

def puissance_rapide(a,n):
    if n == 0:
        return 1
    elif n%2 == 0:
        return puissance_rapide(a,n//2) ** 2
    else:
        return a * puissance_rapide(a,n//2) ** 2
```

Exercice 7 – Dichotomie ($\star\star$)

On considère la fonction suivante :

```
def recherche_dichotomique_erronée(x,L) :
       g = 0
2
       d = len(L) - 1
       while g != d :
           m = (g + d) // 2
5
           if L[m] == x :
6
                return m
           elif L[m] < x :
               g = m
           else :
10
              d = m
11
       if L[g] == x :
12
           return g
13
       return -1
14
```

1. Quelles sont les valeurs successives de g, d et m si l'on exécute

```
recherche_dichotomique_erronée(7 ,[i for i in range(2,21,2)])? Quel est le problème?
```

```
passage 1: g=0, d=9, m=4 et L[m]=10
passage 2: g=0, d=4, m=2 et L[m]=6
passage 3: g=2, d=4, m=3 et L[m]=8
passage 4: g=2, d=3, m=2 et L[m]=6
passage 4: g=2, d=3, m=2 et L[m]=6 et ainsi de suite.
```

La fonction ne va jamais s'arrêter, car comme L[m]<7, on fait g=m ce qui ne modifie pas la valeur de g.

2. Corrigez la fonction ci-dessus.

Il faut remplacer la ligne 4 par : while g < d-1: